А вот и ответы на три вопроса с собеседований, которые мы недавно вам задавали!
1️⃣Как оценить статистическую значимость анализа?
Для оценки статистической значимости нужно провести проверку гипотезы. Сначала определяют нулевую и альтернативную гипотезы. Затем рассчитывают p – вероятность получения наблюдаемых результатов, если нулевая гипотеза верна. Наконец, устанавливают уровень значимости alpha. Если p < alpha, нулевая гипотеза отвергается – иными словами, анализ является статистически значимым.
2️⃣ Приведите три примера распределений с длинным хвостом. Почему они важны в задачах классификации и регрессии?
Три практических примера: степенной закон, закон Парето и продажи продуктов (например, продукты-бестселлеры против обычных).
При решении задач классификации и регрессии важно не забывать о распределении с длинным хвостом, поскольку редко встречающиеся значения составляют существенную часть выборки. Это влияет на выбор метода обработки выбросов. Кроме того, некоторые методики машинного обучения предполагают, что данные распределены нормально.
3️⃣ Что такое центральная предельная теорема, и почему она важна?
Центральная предельная теорема (ЦПТ) говорит о том, что сумма достаточно большого количества слабо зависимых случайных величин с примерно одинаковыми масштабами имеет распределение, близкое к нормальному.
Центральная предельная теорема важна, поскольку она используется при проверке гипотез и расчете доверительных интервалов.
А вот и ответы на три вопроса с собеседований, которые мы недавно вам задавали!
1️⃣Как оценить статистическую значимость анализа?
Для оценки статистической значимости нужно провести проверку гипотезы. Сначала определяют нулевую и альтернативную гипотезы. Затем рассчитывают p – вероятность получения наблюдаемых результатов, если нулевая гипотеза верна. Наконец, устанавливают уровень значимости alpha. Если p < alpha, нулевая гипотеза отвергается – иными словами, анализ является статистически значимым.
2️⃣ Приведите три примера распределений с длинным хвостом. Почему они важны в задачах классификации и регрессии?
Три практических примера: степенной закон, закон Парето и продажи продуктов (например, продукты-бестселлеры против обычных).
При решении задач классификации и регрессии важно не забывать о распределении с длинным хвостом, поскольку редко встречающиеся значения составляют существенную часть выборки. Это влияет на выбор метода обработки выбросов. Кроме того, некоторые методики машинного обучения предполагают, что данные распределены нормально.
3️⃣ Что такое центральная предельная теорема, и почему она важна?
Центральная предельная теорема (ЦПТ) говорит о том, что сумма достаточно большого количества слабо зависимых случайных величин с примерно одинаковыми масштабами имеет распределение, близкое к нормальному.
Центральная предельная теорема важна, поскольку она используется при проверке гипотез и расчете доверительных интервалов.
Spiking bond yields driving sharp losses in tech stocks
A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year.
A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.
Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.
Библиотека собеса по Data Science | вопросы с собеседований from hk